Numerical optimization of tokamak and stellarator equilibrium

Samuel A. Lazerson
Theory Department Research and Review Seminar
October 17, 2014

Before we begin some background

- Funding levels (2015)
 - 70% W7-X collaboration
 - 20% NSTX-U/Theory partnership
 - 10% LDRD
- Leaving for W7-X for 9? months in March
- Things I'm not talking about today
 - VMEC Benchmarking
 - DIAGNO Benchmarking
 - SPEC ITER/DIII-D Calculations
 - W7-X Field line mapping experiments

Overview of my optimization work

- LHD Equilibrium Reconstruction
 - Initial work with STELLOPT and VMEC
 - Rewrite and validation of magnetic diagnostics code (DIAGNO)
 - MSE synthetic diagnostics into STELLOPT
- Tokamak 3D Equilibrium Reconstruction
 - Rewrite of STELLOPT (STELLOPTV2)
 - DIII-D Reconstruction (NE,TE,TI profile diagnostics)
 - ITER forward modeling of applied RMP's
- Turbulent Transport Optimization
 - Implementation of parallel GENE in STELLOPTV2
- Development of IPECOPT for NTV optimization on NSTX-U

Optimization of equilibrium in a nutshell.

Input Parameters

Currents
Vacuum Fields
Pressure, etc.

- These need to result in a good match to these.

Synthetic Signals

Mathematically how can this be achieved?

 Begin with some function we wish to minimize (optimize)

$$y_i(p_i)$$
: Function

$$p_i$$
: Parameters

 Given a set of parameters how do we choose better ones?

$$\tilde{p}_i = p_i + h_i$$

Mathematically how can this be achieved?

 Begin with some function we wish to minimize (optimize)

$$y_i(p_i)$$
: Function

 p_i : Parameters

In practice we minimize

$$\chi^{2}(p_{i}) = \sum_{j} \left| \frac{Y_{j} - y_{j}(p_{i})}{\sigma_{j}} \right|^{2}$$

 Given a set of parameters how do we choose better ones?

$$\tilde{p}_i = p_i + h_i$$

Numerical optimization methods are numerous

Derivative Methods

$$\vec{p}_f = \vec{p}_0 + \vec{h}$$

Gradient Descent

$$\vec{h}_{GD} = \alpha \tilde{J}^{\dagger} \tilde{W} (\vec{y}_{target} - \vec{y} (\vec{p}))$$

Gauss Newton

$$\vec{h}_{GN} = [\tilde{J}^{\dagger} \tilde{W} \tilde{J}]^{-1} \tilde{J}^{\dagger} \tilde{W} (\vec{y}_{target} - \vec{y} (\vec{p}))$$

Levenberg

$$\vec{h}_{LEV} = [\tilde{J}^{\dagger} \tilde{W} \tilde{J} + \lambda \tilde{I}]^{-1} \tilde{J}^{\dagger} \tilde{W} (\vec{y}_{target} - \vec{y} (\vec{p}))$$

• Levenberg-Marquardt
$$\vec{h}_{LEV-MAR} = [\tilde{J}^{\dagger}\tilde{W}\tilde{J} + \lambda diag(\tilde{J}^{\dagger}\tilde{W}\tilde{J})]^{-1}\tilde{J}^{\dagger}\tilde{W}(\vec{y}_{target} - \vec{y}(\vec{p}))$$

- Genetic Algorithms
- Particle Swarm
- Simulated Annealing

The modified Levenberg-Marquardt

- Parallelized over Jacobian evaluation
- Scan over the Levenberg parameter
- STEP_OPT procedure if Jacobian evaluation yields better results than Levenberg step (M. Zarnstorff)
- Failed Jacobian directions removed from the analysis (Robust Jacobian)

Robust Jacobian improves fit

Approximately 1/2 of function evaluations forced to fail.

Particle Swarm Optimization (PSO)

- Initial random distribution of points in the parameter hyperspace.
- Each particle has a unique velocity through hyperspace.
- Each particle has a record of its best solution
- All particles keep track of the overall best solution found

Velocity Equation

$$\vec{v}_i^{new} = \vec{v}_i + C_1 \left(\vec{x}_i^{best} - \vec{x}_i \right) + C_2 \left(\vec{x}_{global}^{best} - \vec{x}_i \right)$$

Position Update

$$\vec{x}_i^{new} = \vec{x}_i + \vec{v}_i$$

Particle Swarm Optimization (PSO)

- Initial random distribution of points in the parameter hyperspace.
- Each particle has a unique velocity through hyperspace.
- Each particle has a record of its best solution
- All particles keep track of the overall best solution found

Velocity Equation

$$\vec{v}_i^{new} = \vec{v}_i + C_1 \left(\vec{x}_i^{best} - \vec{x}_i \right) + C_2 \left(\vec{x}_{global}^{best} - \vec{x}_i \right)$$

Position Update

$$\vec{x}_i^{new} = \vec{x}_i + \vec{v}_i$$

STELLOPT fits a VMEC equilibrium to targets

- Optimization Studies
 - Global Stability
 - Turbulent Transport
- Experimental Design
 - HSX, CTH, NCSX
- Reconstruction
 - W7-AS, LHD, DIII-D

LHD Equilibrium Reconstruction

- Free boundary 3D equilibrium fit to
 - Thomson
 - Inteferrometry
 - MSE

DIII-D 3D Equilibrium Reconstruction

- Free boundary 3D (n=3) equilibrium fit to
 - Magnetics
 - Thomson
 - Charge Exchange
 - Inteferrometry

MSE

Normalized Toroidal Flux (s)

0.6

0.4

0.2

0.8

Forward modeling of ITER diagnostic response

- CORSICA used for transport modeling
- STELLOPT used n=3 RMP diagnostic response

ITER Displacement (n=3)

Poloidal Angle (0)

3pi/2

Turbulent transport optimization of stellarators

- The capability to optimize stellarators for reduced ITG and TEM turbulence has been demonstrated (Mynick, Pomphrey, Helander, Proll, Xanthopolous)
- The turbulent proxies have been included in STELLOPTV2
- Work is ongoing to incorporate parallel linear GENE into STELLOPTV2
- W7-X should allow validation

An IPEC based optimization code has been developed

- Calculates a least squares fit of IPEC input parameters to target physics parameters
 - Based on STELLOPT
 - Multiple optimization techniques
 - Targeting NTV torque as calculated by PFNT
 - Fixed and free boundary optimizations
 - Coil currents can be directly optimized

NSTX-U Core Torque Optimization

- An applied vacuum B-normal spectrum was optimized
 - Core Torque tageting (~0.5 [N.m])
 - n=1 spectrum

RWM+NCC coil optimization

DIII-D error field experiments used to validate

- DIII-D C-coil rotation scan experiments
 - C-coil phase and amplitude scan performed (2D parameter space)
 - Optimizer used for similar experiment (SURFMN error field)

Short term plans (next year)

- Publish IPECOPT results (PPCF)
- Implement 3D equilibrium reconstruction on W7-X
- STELLOPT/GENE runs on Hydra/Hopper
- Energetic particle optimization in STELLOPT

Additional Slides

DIII-D MSE Fit

DIII-D Magnetics

